The purification and characterization of arginase from Saccharomyces cerevisiae.

نویسندگان

  • S M Green
  • E Eisenstein
  • P McPhie
  • P Hensley
چکیده

In Saccharomyces cerevisiae, ornithine transcarbamoylase and arginase form a regulatory multienzyme complex (Hensley, P. (1988) Curr. Top. Cell. Regul. 29, 35-75). In this complex, arginase acts as a negative allosteric effector for ornithine transcarbamoylase. Before an analysis of the factors which promote and stabilize complex formation, arginase was purified in milligram quantities from a plasmid-containing, enzyme-overproducing, protease-deficient yeast strain and its physical characterization undertaken. The purified enzyme has a specific activity of 885 mumol urea min-1 mg-1 and a Km for arginine of 15.7 mM. The ultraviolet spectrum has a maximum absorbance at 279 nm, and the steady-state fluorescence emission spectrum has a maximum intensity at 337 nm, suggesting that the 3 tryptophans/polypeptide chain are in a relatively hydrophobic environment. Arginase has a weakly bound manganese responsible for the maintenance of the catalytic activity and is known to be heat activated in the presence of manganese. This effect is half-maximal at 12.1 microM manganese. In addition to a catalytic requirement for manganese, the presence of a more tightly bound metal is suggested from sedimentation studies. The native trimeric enzyme has a sedimentation coefficient of 5.95 S. Removal of the weakly associated metal results in no change in the sedimentation coefficient. However, dialysis with EDTA causes the s-value to decrease to 4.65 S, suggesting that under these conditions, the trimeric enzyme may partially dissociate. An analysis of CD spectra shows that significant spectral changes result from the removal of both the weakly bound metal and dialysis against EDTA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of an Interesting Novel Mutant Strain of Commercial Saccharomyces cerevisiae

The yeast strains that are resistant to high concentration of ethanol have biotechnological benefits and aresuitable models for physiology and molecular genetics research fields. A novel ethanol-tolerant mutant strain,mut1, derived from the commercial Saccharomyces cerevisiae showed higher ethanol production, and alsodemonstrated resistance to ethanol but not to other alcohols...

متن کامل

Purification of Saccharomyces cerevisiae eIF4E/eIF4G/Pab1p Complex with Capped mRNA

Protein synthesis is one of the most complex cellular processes, involving numerous translation components that interact in multiple sequential steps. The most complex stage in protein synthesis is the initiation process. The basal set of factors required for translation initiation has been determined, and biochemical, genetic, and structural studies are now beginning to reveal details of their...

متن کامل

Characterization of Yeast Protein Enzymatic Hydrolysis and Autolysis in Saccharomyces cerevisiae and Kluyveromyces marxianus

Protein recovery under sonication treatment and autolysis, also protein hydrolysis progress during enzymatic hydrolysis (using trypsin and chymotrypsin) and autolysis (using endogenous enzymes) were investigated in Saccharomyces cerevisiae and Kluyveromyces marxianus. Crude protein content of dried yeast cells were 53.22% and 45.6% for S.cerevisiae and K.marxianus, respectively. After 96 hrs of...

متن کامل

Purification and biochemical properties of a thermostable, haloalkaline cellulase from Bacillus licheniformis AMF-07 and its application for hydrolysis of different cellulosic substrates to bioethanol production

A thermophilic strain AMF-07, hydrolyzing carboxymethylcellulose (CMC) was isolated from Kerman hot spring and was identified as Bacillus licheniformis based on 16S rRNA sequence homology. The carboxymethylcellulase (CMCase) enzyme produced by the B. licheniformis was purified by (NH4)2SO4 precipitation, ion exchange and gel filtration chromatography. The purified enzyme gave a single band on S...

متن کامل

Characterization of Phosphate Membrane Transport in Saccharomyces cerevisiae CEN.PK113-5D under Low-Phosphate Conditions Using Aerobic Continuous Culture

Two different growth media, namely complex and defined media, were used to examine establishment of steady-state conditions in phosphate-limited culture system of Saccharomyces cerevisiae CEN.PK113-5D strain. Using the defined growth medium, it was possible to obtain steady state condition in the continuous culture. The effect of phosphate concentration on the growth of S. cerevisiae in pho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 265 3  شماره 

صفحات  -

تاریخ انتشار 1990